Point-spread function reconstruction in ground-based astronomy by l(1)-l(p) model.
نویسندگان
چکیده
In ground-based astronomy, images of objects in outer space are acquired via ground-based telescopes. However, the imaging system is generally interfered by atmospheric turbulence, and hence images so acquired are blurred with unknown point-spread function (PSF). To restore the observed images, the wavefront of light at the telescope's aperture is utilized to derive the PSF. A model with the Tikhonov regularization has been proposed to find the high-resolution phase gradients by solving a least-squares system. Here we propose the l(1)-l(p) (p=1, 2) model for reconstructing the phase gradients. This model can provide sharper edges in the gradients while removing noise. The minimization models can easily be solved by the Douglas-Rachford alternating direction method of a multiplier, and the convergence rate is readily established. Numerical results are given to illustrate that the model can give better phase gradients and hence a more accurate PSF. As a result, the restored images are much more accurate when compared to the traditional Tikhonov regularization model.
منابع مشابه
Edge Artifacts in Point Spread Function-based PET Reconstruction in Relation to Object Size and Reconstruction Parameters
Objective(s): We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF)-based positron emission tomography (PET) image reconstruction.Methods: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL) for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline or...
متن کاملEvaluation of the Effect of Tumor Position on Standardized Uptake Value Using Time-of-Flight Reconstruction and Point Spread Function
Objective(s): The present study was conducted to examine whether the standardized uptake value (SUV) may be affected by the spatial position of a lesion in the radial direction on positron emission tomography (PET) images, obtained via two methods based on time-of-flight (TOF) reconstruction and point spread function (PSF). Methods: A cylinder phantom with the sphere (30mm diameter), located in...
متن کاملThe Starlet Transform in Astronomical Data Processing: Application to Source Detection and Image Deconvolution
We begin with traditional source detection algorithms in astronomy. We then introduce the sparsity data model. The starlet wavelet transform serves as our main focus in this article. Sparse modeling, and noise modeling, are described. Applications to object detection and characterization, and to image filtering and deconvolution, are discussed. The multiscale vision model is a further developme...
متن کاملTip/Tilt point spread function reconstruction for laser guide star multi conjugate adaptive optics
In adaptive optics systems employing laser guide stars, the tip/tilt contribution to the long exposure point spread function must be estim ted separately from the hi h-order tip/tilt removed point spread function because this component is estimated separately from a single or multiple low-order natural guide star wavefront sensors. This paper investigates this problem for laser guide star multi...
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 29 11 شماره
صفحات -
تاریخ انتشار 2012